Continuous Dependence and Differentiation of Solutions of Finite Difference Euqations

نویسنده

  • LINDA LEE
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

متن کامل

L1–framework for Continuous Dependence and Error Estimates for Quasilinear Anisotropic Degenerate Parabolic Equations

We develop a general L–framework for deriving continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations with the aid of the Chen-Perthame kinetic approach [9]. We apply our L–framework to establish an explicit estimate for continuous dependence on the nonlinearities and an optimal error estimate for the vanishing anisotropic viscosity method, without t...

متن کامل

L–framework for Continuous Dependence and Error Estimates for Quasilinear Anisotropic Degenerate Parabolic Equations

We develop a general L1–framework for deriving continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations with the aid of the Chen-Perthame kinetic approach [9]. We apply our L1–framework to establish an explicit estimate for continuous dependence on the nonlinearities and an optimal error estimate for the vanishing anisotropic viscosity method, without...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004